АДМИНИСТРАЦИЯ СУЗЕМСКОГО РАЙОНА БРЯНСКОЙ ОБЛАСТИ МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖЕДЕНИЕ «СУЗЕМСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №2»

ПРИНЯТА

на заседании педсовета протокол № 1 от 31.08.2021г.

УТВЕРЖДАЮ

Приказом от 31.08.2021г. №32

Дополнительная общеобразовательная общеразвивающая программа

технического направления

«ІТ-ТЕХНОЛОГИИ»

Возраст обучающихся	10 – 11 лет	
Срок реализации	1 год	

Автор-составитель: Гришина М.В., педагог дополнительного образования

Суземка 2021

І ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Развитие современного производства дало толчок такому направлению как микроэлектроника. Все больше устройств появляется в окружающем мире, которые содержат в себе электрические компоненты, датчики и другие элементы.

Развитие робототехники в настоящее время включено в перечень приоритетных направлений технологического развития в сфере информационных технологий. Важным условием успешной подготовки инженерно-технических является внедрение инженерно-технического образования в систему воспитания школьников и даже дошкольников. Развитие образовательной робототехники в России сегодня идет в двух направлениях: в рамках общей и дополнительной системы образования. Образовательная робототехника позволяет вовлечь в процесс технического творчества детей, начиная с младшего школьного возраста, дает возможность учащимся создавать инновации своими руками, и заложить основы успешного освоения профессии инженера в будущем.

В образовании применяют различные робототехнические комплексы, одним из которых является образовательный набор «Амперка». Работа с образовательным набором «Амперка» позволяет учащимся исследовать основы механики, физики и программирования. Разработка, сборка и построение алгоритма работы устройства учащимся самостоятельно освоить целый набор знаний из разных областей, в том числе робототехники, электроники, механики, программирования, что способствует повышению интереса к быстроразвивающейся науке робототехнике.

Новизна: Основной акцент в освоении данной программы делается на использование проектной деятельности и самостоятельность в создании проектов и роботов, что позволяет получить полноценные и конкурентоспособные продукты. Проектная деятельность, используемая в процессе обучения, способствует развитию основных компетентностей учащегося, а также обеспечивает связь процесса обучения с практической деятельности за рамками образовательного процесса. При изготовлении моделей обучающиеся сталкиваются с решением вопросов построения радиотехнических и электронных схем, у них вырабатывается инженерный подход к решению встречающихся проблем.

Актуальность программы обусловлена временем и заключается в формировании мотивации к получению инженерно-технических специальностей для возможного продолжения учебы в ВУЗах и последующей работы на предприятиях по инженерно-техническим специальностям. В результате обучения у учащихся складывается общее впечатление о решаемых инженерами задачах, об используемых методах работы.

Программа включает определенный объем теоретических знаний и формы обучения детей на практических занятиях, является первым шагом в процессе знакомства учащихся с основами программирования и микроэлектроники, а также ориентирует школьников на выбор профессии. С помощью платформы Arduino учащийся может создать различные проекты и запрограммировать их на выполнение определенных функций

Педагогическая целесообразность

Содержание программы выстроено таким образом, чтобы помочь школьнику постепенно, шаг за шагом раскрыть в себе творческие возможности и самореализоваться в современном мире.

В процессе сборки и программирования устройств, учащиеся получат дополнительные знания в области физики, механики и информатики, что, в конечном итоге, изменит картину восприятия учащимися технических дисциплин, переводя их из разряда умозрительных в разряд прикладных.

С другой стороны, основные принципы конструирования простейших механических, электрических систем и алгоритмы их автоматического функционирования под управлением программируемых контроллеров, послужат хорошей почвой для последующего освоения более сложного теоретического материала на занятиях.

Возможность самостоятельной разработки и конструирования управляемых устройств для учащихся в современном мире является очень мощным стимулом к познанию нового и формированию стремления к самостоятельному созиданию, способствует развитию уверенности в своих силах и расширению горизонтов познания. Занятия по программе «Амперка», на базе платформы (контроллера) Arduino или её клона. позволяют заложить фундамент для подготовки будущих специалистов нового склада, способных к совершению инновационного прорыва в современной науке и технике.

Педагогические принципы, на которых построено обучение:

1. Систематичность

Принцип систематичности реализуется через структуру программы, а также в логике построения каждого конкретного занятия. В программе подбор тем обеспечивает целостную систему знаний в области начальной робототехники, включающую в себя знания из областей основ механики, физики и программирования. Последовательность же расположения тем программы обуславливается логикой преемственного наращивания количества и качества знаний о принципах построения и программирования управляемых устройств на основе знаний электрических схем, электронных компонентов и программированию микроконтроллеров, способов сборки.

2. Гуманистическая направленность педагогического процесса

Программа разработана с учетом одного из приоритетных направлений развития в сфере информационных технологий и возрастающей потребности общества в высококвалифицированных специалистах инженерных специальностей, и реализует начальную профориентацию учащихся.

3. Связь педагогического процесса с жизнью и практикой

Обучение по программе базируется на принципе практического обучения: центральное место отводится разработке управляемых устройств на базе платформы Arduino и подразумевает сначала обдумывание, написание программы, а затем сборку устройств.

4. Сознательность и активность учащихся в обучении

Принцип реализуется в программе через целенаправленное активное восприятие знаний в области конструирования и программирования, их самостоятельное осмысление, творческую переработку и применение.

5. Прочность закрепления знаний, умений и навыков

Качество обучения зависит от того, насколько прочно закрепляются знания. Закрепление умений и навыков по конструированию и программированию моделей достигается неоднократным целенаправленным повторением и тренировкой в ходе анализа конструкции устройств, составления технического паспорта, продумывания возможных модификаций исходных устройств и разработки собственных.

6. Наглядность обучения

Объяснение техники проектирования электрических схем и программирования микроконтроллеров, проводится на конкретных устройствах и программных продуктах: к каждому из заданий комплекта прилагается презентация, чтобы проиллюстрировать занятие, заинтересовать учеников, побудить их к обсуждению темы занятия.

7. Принцип проблемности обучения

В ходе обучения перед учащимися ставятся задачи различной степени сложности, результатом решения которых является работающее устройство, что способствует развитию у учащихся таких качеств как индивидуальность, инициативность, критичность, самостоятельность, а также ведет к повышению уровня интеллектуальной, мотивационной и других сфер.

8. Принцип воспитания личности

В процессе обучения, учащиеся не только приобретает знания и нарабатывает навыки, но и развивают свои способности, умственные и моральные качества, такие как, умение работать в команде, умение подчинять личные интересы общей цели,

настойчивость в достижении поставленной цели, трудолюбие, ответственность, дисциплинированность, внимательность, аккуратность и др.

9. Принцип индивидуального подхода в обучении

Принцип индивидуального подхода реализуется в возможности каждого учащегося работать в своем режиме за счет большой вариативности исходных заданий и уровня их сложности, при подборе которых педагог исходит из индивидуальных особенностей детей.

Цель программы:

- познакомить учащихся с принципами и методами разработки, конструирования и программирования управляемых электронных устройств на базе вычислительной платформы Arduino;
- развить навыки программирования в современной среде программирования;
- углубить знания, повысить мотивацию к обучению путем практического интегрированного применения знаний, полученных в различных образовательных областях (математика, физика, информатика);
- развить интерес к научно-техническому, инженерно-конструкторскому творчеству;
- развить творческие способности учащихся.

Задачи программы:

Обучающие:

- формирование умения к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения, умения осуществлять целенаправленный поиск информации;
- изучение основ механики;
- изучение основ проектирования и конструирования в ходе построения моделей из деталей конструктора;
- изучение основ алгоритмизации и программирования в ходе разработки алгоритма работы устройства;
- реализация межпредметных связей с физикой, информатикой и математикой.

Развивающие:

- формирование культуры мышления, развитие умения аргументированно и ясно строить устную и письменную речь в ходе составления технического паспорта устройства;
- развитие умения применять методы моделирования и экспериментального исследования;

- развитие творческой инициативы и самостоятельности в поиске решения;
- развитие мелкой моторики;
- развитие логического мышления.

Воспитательные:

- развитие умения работать в команде, умения подчинять личные интересы общей цели;
- воспитание настойчивости в достижении поставленной цели, трудолюбия, ответственности, дисциплинированности, внимательности, аккуратности.

Возраст участников и сроки реализации.

Дополнительная образовательная программа «Амперка» рассчитана на один год реализации и предназначена для освоения школьниками 10-11 лет.

Срок реализации программы – 1 год.

Наполняемость группы: не менее 8-10 человек.

Форма обучения: очная.

Режим занятий:

- количество учебных часов за учебный год 70 часов;
- 1 занятие в неделю по 2 часа;
- продолжительность занятия 90 мин.

Структура образовательного процесса

Образовательная программа рассчитана на один год обучения. В группы принимаются все желающие. Специального отбора не проводится. Программа состоит теоретического материала, практический упражнений.

Каждый теоретический материал и практическое сопровождение соответствует определенному этапу в развитии учащихся.

На этапе обучения необходимо:

- познакомить учащихся с различными видами программирования микроконтроллеров;
- познакомить учащихся с различными электрическими компонентами;
- познакомить учащихся с электрическими схемами;
- познакомить учащихся с принципами работы простейших электрических схем и примерами их использования в простейших устройствах;
- выработать умение читать технологическую карту заданного устройства;
- выработать умение для готового устройства составлять технический паспорт, включающий в себя описание работы устройства;
- взаимодействовать в команде;

• познакомить учащихся с понятием программы и принципом программного управления устройства.

Учащиеся приобретают необходимые знания, умения, навыки по основам конструирования электрических схем, развивают навыки общения и взаимодействия в малой группе/паре.

В процессе обучения полученные знания, умения, навыки закрепляются и расширяются, повышается сложность конструируемых устройств за счет сочетания нескольких видов электрических схем и усложняется поведение устройства. Основное внимание уделяется разработке и модификации основного алгоритма управления устройством.

- учащиеся сочетают в одном устройстве сразу несколько изученных простейших электрических схем; исследуют, какое влияние на поведение устройства оказывает изменение ее конструкции: заменяют электронные компоненты, проводят расчеты, измерения, оценки возможностей устройства, создают отчеты, проводят презентации, придумывают сюжеты, пишут сценарии и разыгрывают спектакли, задействуя в них свои модели;
- происходит закрепление навыков чтения и составления технического паспорта и технологической карты, включающие в себя описание работы устройства;
- учащиеся знакомятся с основами алгоритмизации, изучают способы реализации основных алгоритмических конструкций в среде программирования Arduino IDE.

В обучении упор делается на развитие технического творчества учащихся посредством проектирования и создания учащимися собственных устройств, участия в выставках творческих проектов. При разработке проектов у школьников формируются следующие умения:

- умение составлять технологическую карту своего устройства;
- умение продумать модель поведения устройства, составить алгоритм и реализовать его в среде программирования Arduino IDE;
- умение анализировать устройство, выявлять недостатки в ее конструкции и программе и устранять их;
- умение искать перспективы развития и практического применения устройства.

Вышеперечисленные предложения соответствуют концентрическому способу изложения материала, который предполагает периодическое возвращение учащихся к одному и тому же учебному материалу для все более детального и глубокого его освоения.

Модель образовательного процесса

Методы обучения

• Объяснительно-иллюстративный метод обучения

Учащиеся получают знания в ходе беседы, объяснения, дискуссии, из учебной или методической литературы, через экранное пособие в "готовом" виде.

• Репродуктивный метод обучения

Деятельность обучаемых носит алгоритмический характер, выполняется по инструкциям, предписаниям, правилам в аналогичных, сходных с показанным образцом ситуациях.

• Метод проблемного изложения в обучении

Прежде чем излагать материал, перед учащимися необходимо поставить проблему, сформулировать познавательную задачу, а затем, раскрывая систему доказательств, сравнивая точки зрения, различные подходы, показать способ решения поставленной задачи. Учащиеся становятся свидетелями и соучастниками научного поиска.

• Частично-поисковый, или эвристический метод обучения заключается в организации активного поиска решения выдвинутых в обучении (или самостоятельно сформулированных) познавательных задач в ходе подготовки и реализации творческих проектов.

• Исследовательский метод обучения

обучаемые самостоятельно изучают основные характеристики простых электрических схем и датчиков, работающих в устройстве, ведут наблюдения и измерения и выполняют другие действия поискового характера. Инициатива, самостоятельность, творческий поиск проявляются в исследовательской деятельности наиболее полно.

Формы и режим занятий

В данной программе используется групповая форма организации деятельности учащихся на занятии. Занятия проводятся 1 раз в неделю длительностью 2 академических часа.

Формы проведения занятий подбираются с учетом цели и задач, познавательных интересов и индивидуальных возможностей обучающихся, специфики содержания образовательной программы и возраста воспитанников: рассказ, беседа, дискуссия, учебная познавательная игра, мозговой штурм, и др.

Выполнение образовательной программы предполагает активное участие в олимпиадах, конкурсах, выставках ученического технического творчества.

Промежуточный контроль:

- Тестовый контроль. (Т)
- Фронтальная и индивидуальная беседа. (ФО)
- Участие в конкурсах и выставках различного уровня. (К)

Итоговый контроль:

- Сумма показателей за все время обучения.
- Выполнение комплексной работы по предложенному устройству.
- Творческая работа по темам.

Планируемые результаты обучения

Личностные:

- формирование уважительного отношения к иному мнению; развитие навыков сотрудничества с взрослыми и сверстниками в разных социальных ситуациях, умения не создавать конфликтов и находить выходы из спорных ситуаций:
- 1) знать: способы выражения и отстаивания своего мнения, правила ведения диалога;
- 2) уметь: работать в паре/группе, распределять обязанности в ходе проектирования и программирования модели;
- 3) владеть: навыками сотрудничества со взрослыми и сверстниками, навыками по совместной работе, коммуникации и презентации в ходе коллективной работы над проектом.

Метапредметные:

- освоение способов решения проблем творческого и поискового характера:
- 1) знать: этапы проектирования и разработки устройства, источники получения информации, необходимой для решения поставленной задачи;
- 2) уметь: применять знания основ электрических схем и алгоритмизации в творческой и проектной деятельности;
- 3) владеть: навыками проектирования и программирования собственных устройств с применением творческого подхода.
- формирование умения понимать причины успеха/неуспеха учебной деятельности и способности конструктивно действовать даже в ситуациях неуспеха:
- 1) знать: способы отладки и тестирования разработанного устройства;
- 2) уметь: анализировать модель, выявлять недостатки в ее конструкции и программе и устранять их;
- 3) владеть: навыками поиска и исправления ошибок в ходе разработки, составления технического паспорта, проектирования и программирования собственного устройства.
- использование знаково-символических средств представления информации для создания моделей изучаемых объектов и процессов, схем решения учебных и практических задач:
- 1) знать: способы составления технического паспорта устройства, способы записи алгоритма, способы разработки программы в среде программирования Arduino IDE;

- 2) уметь: уметь читать технологическую карту устройства, составлять технический паспорт устройства, разрабатывать и записывать программу средствами среды программирования Arduino IDE;
- 3) владеть: навыками начального технического моделирования, навыками использования таблиц для отображения и анализа данных, навыками построение устройств по чертежам.
- активное использование речевых средств и средств информационных и коммуникационных технологий для решения коммуникативных и познавательных задач:
- 1) знать: способы описания устройств, в том числе способ записи технического паспорта устройства;
- 2) уметь: составлять технический паспорт устройства, подготавливать творческие проекты и представлять их в том числе с использованием современных технических средств;
- 3) владеть: навыками использования речевых средств и средств информационных и коммуникационных технологий для описания и представления разработанного устройства.
- использование различных способов поиска (в справочных источниках и открытом учебном информационном пространстве сети Интернет), сбора, обработки, анализа, организации, передачи и интерпретации информации в соответствии с коммуникативными и познавательными задачами и технологиями учебного предмета; в том числе умение вводить текст с помощью клавиатуры, фиксировать (записывать) в цифровой форме измеряемые величины и анализировать изображения, звуки, готовить свое выступление и выступать с аудио-, видео- и графическим сопровождением; соблюдать нормы информационной избирательности, этики и этикета:
- 1) знать: основные способы поиска, сбора, обработки, анализа, организации, передачи и интерпретации информации в ходе технического творчества и проектной деятельности;
- 2) уметь: готовить свое выступление и выступать с аудио-, видео- и графическим сопровождением в ходе представления своей модели;
- 3) владеть: навыками работы с разными источниками информации, подготовки творческих проектов к выставкам.
- овладение логическими действиями сравнения, анализа, синтеза, обобщения, классификации по родовидовым признакам, установления аналогий и причинноследственных связей, построения рассуждений, отнесения к известным понятиям:
- 1) знать: элементы и базовые конструкции устройств, этапы и способы построения и программирования устройств;
- 2) уметь: составлять технический паспорт устройства, осуществлять анализ и сравнение устройств, выявлять сходства и различия в конструкции и поведении разных устройств;

- 3) владеть: навыками установления причинно-следственных связей, анализа результатов и поиска новых решений в ходе тестирования работы устройства.
- определение общей цели и путей ее достижения; умение договариваться о распределении функций и ролей в совместной деятельности; осуществлять взаимный контроль в совместной деятельности, адекватно оценивать собственное поведение и поведение окружающих:
- 1) знать: основные этапы и принципы совместной работы над проектом, способы распределения функций и ролей в совместной деятельности;
- 2) уметь: адаптироваться в коллективе и выполнять свою часть работы в общем ритме, налаживать конструктивный диалог с другими участниками группы, аргументированно убеждать в правильности предлагаемого решения, признавать свои ошибки и принимать чужую точку зрения в ходе групповой работы над совместным проектом;
- 3) владеть: навыками совместной проектной деятельности, навыками организация мозговых штурмов для поиска новых решений.

Предметные:

- использование приобретенных знаний и умений для творческого решения несложных конструкторских, художественно-конструкторских (дизайнерских), технологических и организационных задач; приобретение первоначальных представлений о компьютерной грамотности:
- 1) знать: основные электронные компоненты набора «Амперка», технические особенности различных электронных компонентов, основы электрических схем; компьютерную среду, включающую в себя язык программирования;
- 2) уметь: использовать приобретенные знания для творческого решения несложных конструкторских задач в ходе коллективной работы над проектом на заданную тему;
- 3) владеть: навыками создания и программирования действующих устройств на основе набора «Амперка», навыками модификации программы, демонстрации технических возможностей устройства.
- овладение основами логического и алгоритмического мышления, пространственного воображения и математической речи, измерения, пересчета, прикидки и оценки, наглядного представления данных и процессов, записи и выполнения алгоритмов;
- 1) знать: конструктивные особенности устройства, технические способы описания конструкции устройства, этапы разработки, конструирования, программирования устройства;
- 2) уметь: выстраивать гипотезу и сопоставлять с полученным результатом, составлять технический паспорт устройства, логически правильно и технически грамотно описывать

поведение своего устройства, интерпретировать двухмерные и трёхмерные иллюстрации устройств, осуществлять измерения, в том числе измерять время в секундах с точностью до десятых долей, измерять расстояние, упорядочивать информацию в списке или таблице, модифицировать устройство путем изменения конструкции или создания обратной связи при помощи электронных компонентов;

3) владеть: навыками проведения физического эксперимента, навыками начального технического конструирования электрических схем, навыками составления программ. Формы подведения итогов реализации дополнительной образовательной программы. Предусматриваются различные формы подведения итогов реализации образовательной программы: выставка, соревнование, внутригрупповой конкурс, презентация проектов обучающихся, участие в олимпиадах, соревнованиях, учебно-исследовательских конференциях.

Проект — это самостоятельная индивидуальная или групповая деятельность учащихся, рассматриваемая как промежуточная или итоговая работа по данному курсу, включающая в себя разработку технологической карты, составление технического паспорта, сборку и презентацию собственного устройства на заданную тему.

Итоговые работы должны быть представлены на выставке технического творчества, что дает возможность учащимся оценить значимость своей деятельности, услышать и проанализировать отзывы со стороны сверстников и взрослых. Каждый проект осуществляется под руководством педагога, который оказывает помощь в определении темы и разработке структуры проекта, дает рекомендации по подготовке, выбору средств проектирования, обсуждает этапы его реализации. Роль педагога сводится к оказанию методической помощи, а каждый обучающийся учится работать самостоятельно, получать новые знания и использовать уже имеющиеся, творчески подходить к выполнению заданий и представлять свои работы.

II. СОДЕРЖАНИЕ ПРОГРАММЫ

§1. Что такое микроконтроллер?

Знакомство с набором «Амперка», правилами организации рабочего места. Техника безопасности. Знакомство со средой программирования, микроконтроллером, с основными этапами разработки устройства. Подсоединения платы Arduino Uno к ПК. Разработка устройства «Мигающий светодиод» модели с использованием платы Arduino Uno.

§2. Обзор языка программирования Arduino

Знакомство с процедурами setup и loop. Создание чистого листа для написания программы «шаблон». Написание программного кода, и его компиляция. Набор комментария в программном коде. Вызов встроенной процедуры pinMode. Режим OUTPUT. Знакомство с процедурой digitalWrite, delay,ы величиной HIGH, LOW. Разработка устройства «Мигающий светодиод. Знакомство с азбукой Морзе, разработка устройства «SOS».

§3. Электронные компоненты

Знакомство с напряжением, током, сопротивлением, макетной доской, мультиметром, резистором, светодиодом, их обозначения на схемах. Построение схемы «Железнодорожный светофор». Разработка устройства «Железнодорожный светофор».

§4. Ветвление программы

Знакомство с циклом: if, for, while, swith, их конструкции. Запись собственной функции. Модернизация программного кода устройства «SOS».

§5. Массивы и пьезоэлементы

Знакомство с массивом, типы данных: int, char. Знакомство с кодировкой ASCII.

Разработка устройства «Мигающий Болтун». Знакомство с пьезоэлементом. Разработка устройства «Писклявый Болтун», с построением схемы подключения пьезоэлемента. Знакомство с процедурой sound, и переменными rate и time.

§6. ШИМ и смешение цветов

Знакомство с аналоговым сигналом, ШИМ, частотой, инертностью восприятия. Изучение управление яркостью светодиода. Разработка и построение схемы «Затухающий светодиод». Знакомство с трехцветным светодиодом, его обозначение на схеме. Разработка и построение схемы устройства «Радуга».

§7. Диоды. Светодиоды

Знакомство с диодами, светодиодами. Схема подключения к Arduino Uno. Разработка и построение схемы устройства «Матрешка».

§8 Резисторы

Знакомство с резисторами. Знакомство с цветовой кодировкой. Обозначение на схеме. Построение схемы «Маячок»

§9. Кнопка — датчик нажатия

Знакомство с датчиком нажатия, обозначение на схеме, принцип работы. Стягивающий резистор. Разработка и построение схемы устройства «Кнопочный выключатель».

§10. Переменные резисторы

Знакомство с делителем напряжения, потенциометром, фоторезистором, термистором, обозначение на схеме, принцип работы. Стягивающий резистор. Разработка и построение схемы устройства «Ночная подсветка». Заполнение технического паспорта устройства. Разработка и построение схемы устройства «Чайник».

§11. Светодиодные сборки

Знакомство с семисегментным индикатором, обозначение на схеме, принцип работы. Включение индикатора. Разработка и построение схемы устройства «Счетчик до 10».

§12. Микросхемы

Знакомство с микросхемой CD4026, обозначение на схеме, распиновка, принцип работы. Разработка и построение схемы устройства «Счетчик до 99».

§13. Жидкокристаллические экраны

Знакомство с текстовым дисплеем, выводами LCD - экрана обозначение на схеме, принцип работы. Разработка и построение схемы устройства «Подсветка». Заполнение технического паспорта устройства. Знакомство с кодировкой UTF, ср1251, кириллица. Вывод текста на русском языке. Разработка и построение схемы устройства «Подсветка».

§14. Соединение с компьютером

Знакомство с последовательным портом, параллельным портом. Передача данных с компьютера на Arduino. Разработка и построение схемы устройства «Фраза».

§15. Двигатели

Знакомство с постоянными двигателями, шаговые двигатели, серводвигатели, обозначение на схеме, принцип работы. Разработка и построение схемы устройства «Вентилятор».

§16. Транзисторы

Знакомство с транзистором, полевой транзистор, биполярный транзистор. обозначение на схеме, принцип работы. Разработка и построение схемы устройства «Неисправный вентилятор». Заполнение технического паспорта устройства. Разработка и построение схемы устройства «Управляемый вентилятор».

§17. Сборка мобильного робота

Знакомство с датчиком линии, колесной платформой, мезонинной платой. Разработка и построение робота «Вжик».

§18. Езда робота по линии

Модернизация робота «Вжик».

Творческая работа «Свой полигон».

Создание собственного полигона для испытания роботов по их назначению

Разработка модели «Охотник».

Обсуждение элементов робота, конструирование, разработка и запись управляющего алгоритма, заполнение технического паспорта робота «Охотник»

Творческая работа «Наши помощники».

Составление собственного робота, составление технологической карты и технического паспорта робота. Разработка одного или нескольких вариантов управляющего алгоритма. Демонстрация и защита робота. Сравнение моделей. Подведение итогов.

Конкурс конструкторских идей.

Создание и программирование собственных роботов с помощью набора «Амперка», составление технологической карты и технического паспорта робота/устройства, демонстрация и защита робота/устройства. Сравнение роботов/устройств. Подведение итогов.

III. УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

Курс рассчитан на 70 часов (2 часа в неделю).

No	T	Общее кол-во	в том числе	
занятия	Тема занятия	часов	теория	практика
1	§1. Техника безопасности. Что такое микроконтроллер? Что такое электричество?	2	2	-
2	§2. Обзор языка программирования Arduino	2	2	-
3-4	§3. Принципиальные схемы. Электронные компоненты	4	2	2
5	§4. Ветвление программы	2	1	1
6	§5. Массивы и пьезоэлементы	2	1	1
7-8	§6. ШИМ и смешение цветов	4	2	2
9	§7. Диоды. Светодиоды	2	1	1
10	§8 Резисторы.	2	1	1
11	§9. Кнопка — датчик нажатия	2	1	1
12	§10. Переменные резисторы	2	1	1
13-14	§11. Светодиодные сборки	4	2	2
15-16	§12. Микросхемы	4	2	2
17-18	§13. Жидкокристаллические экраны	4	2	2
19	§14. Соединение с компьютером	2	1	1
20	§15. Двигатели	2	1	1
21	§16. Транзисторы	2	1	1
22-23	§17. Сборка мобильного робота	4	2	2
24-25	§18. Езда робота по линии	4	2	2
26-27	Творческая работа «Свой полигон».	4	-	4
28-29	Разработка модели «Охотник».	4	-	4
30-32	Творческая работа «Наши защитники».	6	-	6
33-35	Конкурс конструкторских идей.	6	-	6
	ВСЕГО:	70	27	43

IV. Ресурсное обеспечение программы

Для достижения прогнозируемых в программе образовательных результатов необходимы следующие ресурсные компоненты:

IV. МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Обеспечение программы предусматривает наличие следующих методических видов продукции:

- инструкции по сборке (в электронном виде)
- книга для учителя (в печатном, электронном виде)
- экранные видео лекции, видео ролики;
- информационные материалы на сайте, посвященном данной дополнительной образовательной программе;

По результатам работ всей группы будет создаваться мультимедийное интерактивное издание, которое можно будет использовать не только в качестве отчетности о проделанной работе, но и как учебный материал для следующих групп обучающихся.

Дидактическое обеспечение

Дидактическое обеспечение программы представлено конспектами занятий и презентациями к ним.

Материально-техническое обеспечение программы

- Компьютерный класс.
- Набор «Амперка»:
 - Программное обеспечение Arduino IDE;
 - о Контроллер
 - 1× Плата Arduino Uno
 - о Сенсоры
 - 2× Датчик линии
 - 1× Датчик наклона
 - 2× Фоторезистор
 - 2× Термистор
 - 4× Кнопка тактовая
 - 2× Потенциометр

о Прототипирование и провода

- 1× Макетная доска
- 75× Соединительный провод
- 1× USB-кабель
- 1× Разъём для батарейки

о Механика

- 1× Двухколёсное шасси робота
- 1× Сервопривод

Индикация и звук

- 1× Текстовый ЖК-экран
- 2× 7-сегментный индикатор
- 12× Светодиод красный
- 4× Светодиод жёлтый
- 4× Светодиод зелёный
- 2× Трёхцветный светодиод
- 2× Пьезоизлучатель звука

о Базовые компоненты

- 60× Резистор 220 Ом
- 20× Резистор 1 кОм
- 20× Резистор 10 кОм

- 20× Резистор 100 кОм
- 10× Биполярный транзистор
- 4× Транзистор MOSFET
- 2× Микросхема CD4026
- 5× Выпрямительный диод

о Инструменты

1× Мультиметр цифровой

о Платы расширения

- 1× Драйвер моторов Motor Shield
- 1× Расширитель портов Troyka Shield

Техника безопасности

Обучающиеся в первый день занятий проходят инструктаж по правилам техники безопасности и расписываются в журнале. Педагог на каждом занятии напоминает обучаемым об основных правилах соблюдения техники безопасности.

Список литературы

5.1. Для педагога

- 1. CONSTRUCTOPEDIA NXT Kit 9797, Beta Version 2.1, 2008, Center for Engineering Educational Outreach, Tufts University,
 - http://www.legoengineering.com/library/doc_download/150-nxt-constructopedia-beta-21.html.
- 2. Engineering with LEGO Bricks and ROBOLAB. Third edition. Eric Wang. College House Enterprises, LLC, 2007.
- 3. http://www.legoeducation.info/nxt/resources/building-guides/
- 4. http://www.legoengineering.com/
- 5. Lego Mindstorms NXT. The Mayan adventure. James Floyd Kelly. Apress, 2006.
- 6. LEGO Technic Tora no Maki, ISOGAWA Yoshihito, Version 1.00 Isogawa Studio, Inc., 2007, http://www.isogawastudio.co.jp/legostudio/toranomaki/en/.
- 7. The LEGO MINDSTORMS NXT Idea Book. Design, Invent, and Build by Martijn Boogaarts, Rob Torok, Jonathan Daudelin, et al. San Francisco: No Starch Press, 2007.
- 8. The Unofficial LEGO MINDSTORMS NXT Inventor's Guide. David J. Perdue. San Francisco: No Starch Press, 2007.
- 9. Журнал «Компьютерные инструменты в школе», подборка статей за 2010 г. «Основы робототехники на базе конструктора Lego Mindstorms NXT».
- 10. ПервоРобот LEGO® WeDo^{тм} Книга для учителя [Электронный ресурс]
- 1. Робототехника для детей и родителей. С.А. Филиппов. СПб: Наука, 2010.
- 2. Санкт-Петербургские олимпиады по кибернетике М.С.Ананьевский, Г.И.Болтунов, Ю.Е.Зайцев, А.С.Матвеев, А.Л.Фрадков, В.В.Шиегин. Под ред. А.Л.Фрадкова, М.С.Ананьевского. СПб.: Наука, 2006.

5.2. Для детей и родителей

- 3. Робототехника для детей и родителей. С.А.Филиппов. СПб: Наука, 2010.
- 4. Санкт-Петербургские олимпиады по кибернетике М.С.Ананьевский, Г.И.Болтунов, Ю.Е.Зайцев, А.С.Матвеев, А.Л.Фрадков, В.В.Шиегин. Под ред. А.Л.Фрадкова, М.С.Ананьевского. СПб.: Наука, 2006.
- 5. Журнал «Компьютерные инструменты в школе», подборка статей за 2010 г. «Основы робототехники на базе конструктора Lego Mindstorms NXT».
- 6. Я, робот. Айзек Азимов. Серия: Библиотека приключений. М: Эксмо, 2002.

Использованные материалы

- 1. Дистанционный курс на сайте amperka.ru http://wiki∎amperka∎ru/конспект-arduino
- 2. «Основы программирования микроконтроллеров» Учебник для образовательного набора «Амперка», Москва 2013
- 3. Список ссылок на сайте Arduino, do it! https://sites.google.com/site/arduinodoit/